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Directions to Students  

    
• Reading Time : 5 minutes  • Total Marks 120 
• Working Time : 3 hours  
• Write using blue or black pen. 

(sketches in pencil). 
• Attempt Question 1 – 8 

• Board approved calculators may 
     be used 

• All questions are of equal value 

• A table of standard integrals is 
provided at the back of this paper. 

 

• All necessary working should be 
shown in every question. 

 

• Answer each question in the 
booklets provided and clearly 
label your name and teacher’s 
name. 
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Question 1 (15 marks)  Use a SEPARATE writing booklet                                Marks 
 
 
(a) (i) Show that  ( ) ( )sin sin 2sin cosA B A B A B+ + − =  

 

1 

 (ii) Hence find the indefinite integral   sin 5 cos3x x dx∫  

 
 
 

2 
 
 

(b)  
Evaluate  

5

0 4

t dt

t +∫  

 
 

2 
 
 

(c)  
Evaluate  

1

1

3x dx
−
∫   correct to three significant figures. 

 
 

2 
 
 

(d)  

Evaluate  

1

3

2
0 1 9

dx

x−∫  

2 
 
 
 

(e)  
Find  

1

1 sin
dx

x+∫
, using the substitution  tan

2

x
t =  

3 
 
 
 

(f)  
Use integration by parts to find   

1cos

1

x
dx

x

−

+∫  
3 
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Question 2 (15 marks)  Use a SEPARATE writing booklet                                Marks 
 
 
(a)  

Prove that  ( )
3

sin

x
f x

x
=  is an even function. 

 

2 
 
 
 

(b)  A sketch of  ( ) ( )( )4 1 2f x x x= − + −  is shown below. 

x-5 5 10

y

-10

-5

5

10

(0.5, 9)

(0.5,9)

 
 
 

 
 

  With the aid of the above diagram, and without the use of calculus,  
draw a separate half page sketch for each of the following. 
 

 
 

 (i) ( )y f x=  

 

1 

 (ii) ( )2y f x=  1 
 

 (iii)  ( )y f x= −  1 

 (iv) 

( )
1

y
f x

=  
2 

 (v) ( )y f x=  2 

 (vi) ( )logey f x=  2 
 
 
 

(c)  Using calculus, show that  1 0xe x− + − ≥  for real x. 4 
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Question 3 (15 marks)  Use a SEPARATE writing booklet                                Marks 
 
 
(a)  Express the following in the form ( )x iy+ , where x and y are real: 

 
2 1 1

1

i

i i

− +
+

 

 
 

2 
 
 
 

(b)   
 
 
 
 
 
 
 
 
 
 
 
 
 
The Argand diagram above, shows a regular hexagon with vertex  A 
at the point ( )0,3i .  O is the centre of the hexagon.  

 

 
 

 (i) Copy the diagram into your writing booklet.  
 

 

 (ii) On your diagram show the region within the hexagon in which both 

the inequalities  2z ≤   and  arg
6 6

z
π π− ≤ ≤   are satisfied. 

 

2 
 

 (iii)  Find in the form  1z z R− = , the equation of the circle through the 

points O, B and F.  
 

1 

 (iv) Find the complex numbers, in modulus argument form, represented 
by the points B and C. 
 

2 

 (v) The hexagon is rotated anticlockwise about the origin through an 

angle of  
4

π
.  Express in the form  ( )cos sinr iθ θ+ , where θ  is the 

principal argument, the complex numbers represented by the new 
positions of  B and C.  
 
 
 
 
 
Question 3 continues  on page 5 

3 

Re (z)

Im (z)

A (0, 3i )

G

F

D

C

B

O
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Question 3 (continued) 
 
 
    
(c)  If   1 - 2i  is a root of the equation  ( )2 3 0z i z k− + + = ,   

 
 (i) explain why the conjugate  1 + 2i  cannot be a root  to the equation 1 

 
 (ii) show that the other root is  2 + 3i 1 

 
 (iii)  find the value of  k 1 

 
 (iv) hence, or otherwise, find the two square roots of  -24 + 10i. 2 
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Question 4 (15 marks)  Use a SEPARATE writing booklet                                Marks 
 
 
(a)  A polynomial  ( ) 2 2np x x ax= + −   has a factor of  ( )1x −  and leaves 

a remainder of  6−  on division by  ( )2x + . 

Find: 

 
 
 

 (i) the value of  a 
 

1 
 

 (ii) the value of  n 1 
 

 (iii)  the zeros of  ( )p x . 

 

2 
 
 
 

(b)  Find the values of  a  and  b  so that  

( ) ( ) ( )3 22 2 1 2 1p x x a x b x= − + + + −  has a double root at  x = 1.  
4 
 
 
 
 

(c)  If  l, m, n are the roots of the equation  3 2 5 0,x x− + =   

 (i) find the cubic equation whose roots are 2l, 2m, 2n. 2 
 

 (ii) find the value of   3 3 3l m n+ + . 2 
 
 

(d)  Find all the values of  k for which the polynomial equation  
4 33 4 0x x k− + =   has no real roots.    

3 
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Question 5 (15 marks)  Use a SEPARATE writing booklet                                Marks 
 
 
(a)   

An ellipse has the equation  
2 2

1
25 16

x y+ = . O is the centre of the 

ellipse and S and S’ are the foci.   

 
 
 

 (i)  
Find 

 

( )α  
 
the eccentricity 

 
1 

  ( )β  the co-ordinates of the foci 1 
 

  ( )γ  the equations of the directrices. 
 

1 
 

 (ii)  Make a third of a page sketch of the ellipse showing the 
features found in part (i) 

2 
 
 

 (iii)  If  ( )0, 0P x y  is a point on the ellipse show that  ( )'PS PS+  is 

constant. You may mark point P in quadrant one of the above 
mentioned diagram. 
 

2 

 (iv)  Show that the equation of the tangent at  ( )0 0,P x y  is  

0 0 1
25 16

xx yy+ = .  

2 
 
 
 

 (v)  The tangent at P meets the nearer focus at R. If  S  is the nearer 
focus to P,  

 

  ( )α  write down the co-ordinates of  R. 1 
 

  ( )β  find expressions for the gradients of PR and SR in terms of 0x  

and  0y . 

 

2 

  ( )γ  show that the angle PSR is a right angle.  1 
 
 

(b)   A hyperbola has its centre at the origin and asymptotes  
2

3
y x= ± . Find its equation. 

2 
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Question 6 (15 marks)  Use a SEPARATE writing booklet                                Marks 
 
 
(a)  The region bounded by the curve ( )2y x x= −  and the x–axis is 

rotated about the y-axis. Find the volume of the solid of revolution by 
taking slices perpendicular to the y-axis. 
 
 

4 
 
 
 

(b)  The region bounded by  the curve lny x= , the line 1y =  and the     
co-ordinate axes is rotated about the x-axis.  
 

 
 

 (i) By dividing the resulting solid into cylindrical shells, show that each 
shell has an approximate volume :  2 yv ye yδ π δ=   where  yδ  is the 
thickness of the shell.    
 

2 

 (ii) Hence calculate the volume of the solid. 2 
 
 

(c)  The base of a particular solid is the circle 2 2 8x y+ = . Find the 
volume of the solid if every cross section to the x-axis is an    
isosceles – right angled triangle with the hypotenuse in the base of the 
solid.  
 
 

4 

(d)  Show that the straight line  0lx my n+ + =  is a tangent to the 

hyperbola  
2 2

2 2
1

x y

a b
− =   if  2 2 2 2 2a l b m n− = . 

3 
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Question 7 (15 marks)  Use a SEPARATE writing booklet                                Marks 
 
 
(a)  Mr Kirkpatrick’s mathematics class brought him a ride in a Gondola 

at Queenstown in New Zealand, during a recent trip. When Mr 
Kirkpatrick’s hands were H  metres above the Earth’s surface, he 
dropped overboard his packet of beer nuts of mass m kg. The packet 
of beer nuts encounters air resistance proportional to its velocity v 
(which is in metres per second), that is the resistive force is equal to 
mkv.   
Taking  Mr Kirkpatrick’s hands as the origin and downwards 
displacement  as positive: 
 

 
 
 

 (i) Write down an equation of motion representing the passage of the 
packet  of beer nuts. 
 

2 
 

 (ii) Find the terminal velocity , w, of the packet of beer nuts. 1 
 

 (iii) Show that the equation of motion in part (i) can be written as  

( )x k w v= −&& .  
1 
 
 

 (iv) Show that the displacement, x metres, of the packet of beer nuts from 

Mr Kirkpatrick’s hands is given by:  ln
v w w v

x
k k w

− = − −  
 

. 

 

4 

 (v) If the packet reaches the Earth’s surface with a velocity  of  u metres 

per second, show that  ln 1 0
u u kH

w w w
 − + + = 
 

.  

 

1 

 (vi) Consider the moment when the packet of beer nuts has reached 75% 
of its terminal velocity.  
Find: 

 

 ( )α  the time, t seconds, for this moment to be reached. 3 
 

 ( )β  the distance fallen at this moment. 3 
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Question 8 (15 marks)  Use a SEPARATE writing booklet                                Marks 
 
 
(a)  Draw a neat half page sketch  of the graph for  ( )2 2 24y x x= − .  3 

 
(b)   

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

  In the above diagram AB and BC are chords of a circle, and F is on 
the arc ABC such that arc AF is equal to arc FC. E is the foot of the 
perpendicular from F to the chord BC. CB is extended to P so that  
PE = EC. (Note that B is inside the triangle APF)  
 

 

 (i) Show that the triangle APF is isosceles. 3 
 

 (ii) Show that  AB + BE = EC. 
 
 
 
 
 
 
 
 
 
 
Question 8  continues on page 11 

4 
 
 
 
 
 
 
 
 
 
 
 
 

F

E

BP
C

A
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Question 8 (continued) 
 
 
(c)   

 
 
 
 
 
 
 
 
 
 
 
 
 

 

   
A triangle ABC has sides of varying length  a, b and c with a fixed 
interior angle of  BAC =     as shown in the above diagram.             
Use the cosine rule to show that:  

 

 (i) 2a bc≥ , and hence, 3 

 (ii) 
the area of triangle 

2 3

4

a
ABC ≤

2 3

4

a
ABC ≤     

2 

 
 
 
 
 
 
 
 
 
 
 
 
End of examination 

C

B

A

b

a

c

π
3






















































